U
    b                     @  s  d dl mZ d dlZd dlZd dlmZ d dlZd dlmZ d dl	m
Z
mZmZmZmZmZmZmZmZmZmZmZ d dlZd dlZd dlmZ d dlmZ d dlmZmZmZm Z m!Z!m"Z" d d	l#m$Z$m%Z% d d
l&m'Z' d dl(m)Z)m*Z*m+Z+ d dl,m-Z- d dl.m/Z/m0Z0m1Z1m2Z2 d dl3m4Z4 d dl5m6Z6 d dl7m8Z8 d dl9m:Z:m;Z;m<Z<m=Z= d dl>m?Z?m@Z@mAZAmBZBmCZC d dlDmEZE dedFeGeddd d ZHedHddddddd d d!d"d#d#d#d$d%d$d&dd#d'd(d)d*d+ZIedId,dddddd d d!d"d#d#d#d$d%d$d&dd#d'd-d)d.d+ZIe*d/d0gd1d2e)eHdJd6dddddd d d!d"d#d#d#d$d%d$d&dd#d'd7d)d8d+ZIG d9d: d:ejJd;ZKG d<d= d=ejJd;ZLd>ZMd?ZNeOePeQeMeNf ZRe+e6d@ dAdKdBd'd$dCdDdEZSG dFdG dGZTdS )L    )annotationsN)BytesIO)fill)IOAnyCallableHashableIterableListLiteralMappingSequenceUnioncastoverload)config)STR_NA_VALUES)DtypeArgFilePathIntStrT
ReadBufferStorageOptionsWriteExcelBuffer)get_versionimport_optional_dependency)EmptyDataError)Appenderdeprecate_nonkeyword_argumentsdoc)find_stack_level)is_boolis_float
is_integeris_list_like)	DataFrame)_shared_docs)Version)	IOHandles
get_handlestringify_pathvalidate_header_arg)fill_mi_headerget_default_engine
get_writermaybe_convert_usecolspop_header_name)
TextParsera  
Read an Excel file into a pandas DataFrame.

Supports `xls`, `xlsx`, `xlsm`, `xlsb`, `odf`, `ods` and `odt` file extensions
read from a local filesystem or URL. Supports an option to read
a single sheet or a list of sheets.

Parameters
----------
io : str, bytes, ExcelFile, xlrd.Book, path object, or file-like object
    Any valid string path is acceptable. The string could be a URL. Valid
    URL schemes include http, ftp, s3, and file. For file URLs, a host is
    expected. A local file could be: ``file://localhost/path/to/table.xlsx``.

    If you want to pass in a path object, pandas accepts any ``os.PathLike``.

    By file-like object, we refer to objects with a ``read()`` method,
    such as a file handle (e.g. via builtin ``open`` function)
    or ``StringIO``.
sheet_name : str, int, list, or None, default 0
    Strings are used for sheet names. Integers are used in zero-indexed
    sheet positions (chart sheets do not count as a sheet position).
    Lists of strings/integers are used to request multiple sheets.
    Specify None to get all worksheets.

    Available cases:

    * Defaults to ``0``: 1st sheet as a `DataFrame`
    * ``1``: 2nd sheet as a `DataFrame`
    * ``"Sheet1"``: Load sheet with name "Sheet1"
    * ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5"
      as a dict of `DataFrame`
    * None: All worksheets.

header : int, list of int, default 0
    Row (0-indexed) to use for the column labels of the parsed
    DataFrame. If a list of integers is passed those row positions will
    be combined into a ``MultiIndex``. Use None if there is no header.
names : array-like, default None
    List of column names to use. If file contains no header row,
    then you should explicitly pass header=None.
index_col : int, list of int, default None
    Column (0-indexed) to use as the row labels of the DataFrame.
    Pass None if there is no such column.  If a list is passed,
    those columns will be combined into a ``MultiIndex``.  If a
    subset of data is selected with ``usecols``, index_col
    is based on the subset.
usecols : int, str, list-like, or callable default None
    * If None, then parse all columns.
    * If str, then indicates comma separated list of Excel column letters
      and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
      both sides.
    * If list of int, then indicates list of column numbers to be parsed.
    * If list of string, then indicates list of column names to be parsed.
    * If callable, then evaluate each column name against it and parse the
      column if the callable returns ``True``.

    Returns a subset of the columns according to behavior above.
squeeze : bool, default False
    If the parsed data only contains one column then return a Series.

    .. deprecated:: 1.4.0
       Append ``.squeeze("columns")`` to the call to ``read_excel`` to squeeze
       the data.
dtype : Type name or dict of column -> type, default None
    Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
    Use `object` to preserve data as stored in Excel and not interpret dtype.
    If converters are specified, they will be applied INSTEAD
    of dtype conversion.
engine : str, default None
    If io is not a buffer or path, this must be set to identify io.
    Supported engines: "xlrd", "openpyxl", "odf", "pyxlsb".
    Engine compatibility :

    - "xlrd" supports old-style Excel files (.xls).
    - "openpyxl" supports newer Excel file formats.
    - "odf" supports OpenDocument file formats (.odf, .ods, .odt).
    - "pyxlsb" supports Binary Excel files.

    .. versionchanged:: 1.2.0
        The engine `xlrd <https://xlrd.readthedocs.io/en/latest/>`_
        now only supports old-style ``.xls`` files.
        When ``engine=None``, the following logic will be
        used to determine the engine:

       - If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
         then `odf <https://pypi.org/project/odfpy/>`_ will be used.
       - Otherwise if ``path_or_buffer`` is an xls format,
         ``xlrd`` will be used.
       - Otherwise if ``path_or_buffer`` is in xlsb format,
         ``pyxlsb`` will be used.

         .. versionadded:: 1.3.0
       - Otherwise ``openpyxl`` will be used.

         .. versionchanged:: 1.3.0

converters : dict, default None
    Dict of functions for converting values in certain columns. Keys can
    either be integers or column labels, values are functions that take one
    input argument, the Excel cell content, and return the transformed
    content.
true_values : list, default None
    Values to consider as True.
false_values : list, default None
    Values to consider as False.
skiprows : list-like, int, or callable, optional
    Line numbers to skip (0-indexed) or number of lines to skip (int) at the
    start of the file. If callable, the callable function will be evaluated
    against the row indices, returning True if the row should be skipped and
    False otherwise. An example of a valid callable argument would be ``lambda
    x: x in [0, 2]``.
nrows : int, default None
    Number of rows to parse.
na_values : scalar, str, list-like, or dict, default None
    Additional strings to recognize as NA/NaN. If dict passed, specific
    per-column NA values. By default the following values are interpreted
    as NaN: 'z', 'F   z    )subsequent_indenta  '.
keep_default_na : bool, default True
    Whether or not to include the default NaN values when parsing the data.
    Depending on whether `na_values` is passed in, the behavior is as follows:

    * If `keep_default_na` is True, and `na_values` are specified, `na_values`
      is appended to the default NaN values used for parsing.
    * If `keep_default_na` is True, and `na_values` are not specified, only
      the default NaN values are used for parsing.
    * If `keep_default_na` is False, and `na_values` are specified, only
      the NaN values specified `na_values` are used for parsing.
    * If `keep_default_na` is False, and `na_values` are not specified, no
      strings will be parsed as NaN.

    Note that if `na_filter` is passed in as False, the `keep_default_na` and
    `na_values` parameters will be ignored.
na_filter : bool, default True
    Detect missing value markers (empty strings and the value of na_values). In
    data without any NAs, passing na_filter=False can improve the performance
    of reading a large file.
verbose : bool, default False
    Indicate number of NA values placed in non-numeric columns.
parse_dates : bool, list-like, or dict, default False
    The behavior is as follows:

    * bool. If True -> try parsing the index.
    * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
      each as a separate date column.
    * list of lists. e.g.  If [[1, 3]] -> combine columns 1 and 3 and parse as
      a single date column.
    * dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call
      result 'foo'

    If a column or index contains an unparsable date, the entire column or
    index will be returned unaltered as an object data type. If you don`t want to
    parse some cells as date just change their type in Excel to "Text".
    For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``.

    Note: A fast-path exists for iso8601-formatted dates.
date_parser : function, optional
    Function to use for converting a sequence of string columns to an array of
    datetime instances. The default uses ``dateutil.parser.parser`` to do the
    conversion. Pandas will try to call `date_parser` in three different ways,
    advancing to the next if an exception occurs: 1) Pass one or more arrays
    (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
    string values from the columns defined by `parse_dates` into a single array
    and pass that; and 3) call `date_parser` once for each row using one or
    more strings (corresponding to the columns defined by `parse_dates`) as
    arguments.
thousands : str, default None
    Thousands separator for parsing string columns to numeric.  Note that
    this parameter is only necessary for columns stored as TEXT in Excel,
    any numeric columns will automatically be parsed, regardless of display
    format.
decimal : str, default '.'
    Character to recognize as decimal point for parsing string columns to numeric.
    Note that this parameter is only necessary for columns stored as TEXT in Excel,
    any numeric columns will automatically be parsed, regardless of display
    format.(e.g. use ',' for European data).

    .. versionadded:: 1.4.0

comment : str, default None
    Comments out remainder of line. Pass a character or characters to this
    argument to indicate comments in the input file. Any data between the
    comment string and the end of the current line is ignored.
skipfooter : int, default 0
    Rows at the end to skip (0-indexed).
convert_float : bool, default True
    Convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
    data will be read in as floats: Excel stores all numbers as floats
    internally.

    .. deprecated:: 1.3.0
        convert_float will be removed in a future version

mangle_dupe_cols : bool, default True
    Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than
    'X'...'X'. Passing in False will cause data to be overwritten if there
    are duplicate names in the columns.
storage_options : dict, optional
    Extra options that make sense for a particular storage connection, e.g.
    host, port, username, password, etc., if using a URL that will
    be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error
    will be raised if providing this argument with a local path or
    a file-like buffer. See the fsspec and backend storage implementation
    docs for the set of allowed keys and values.

    .. versionadded:: 1.2.0

Returns
-------
DataFrame or dict of DataFrames
    DataFrame from the passed in Excel file. See notes in sheet_name
    argument for more information on when a dict of DataFrames is returned.

See Also
--------
DataFrame.to_excel : Write DataFrame to an Excel file.
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
read_csv : Read a comma-separated values (csv) file into DataFrame.
read_fwf : Read a table of fixed-width formatted lines into DataFrame.

Examples
--------
The file can be read using the file name as string or an open file object:

>>> pd.read_excel('tmp.xlsx', index_col=0)  # doctest: +SKIP
       Name  Value
0   string1      1
1   string2      2
2  #Comment      3

>>> pd.read_excel(open('tmp.xlsx', 'rb'),
...               sheet_name='Sheet3')  # doctest: +SKIP
   Unnamed: 0      Name  Value
0           0   string1      1
1           1   string2      2
2           2  #Comment      3

Index and header can be specified via the `index_col` and `header` arguments

>>> pd.read_excel('tmp.xlsx', index_col=None, header=None)  # doctest: +SKIP
     0         1      2
0  NaN      Name  Value
1  0.0   string1      1
2  1.0   string2      2
3  2.0  #Comment      3

Column types are inferred but can be explicitly specified

>>> pd.read_excel('tmp.xlsx', index_col=0,
...               dtype={'Name': str, 'Value': float})  # doctest: +SKIP
       Name  Value
0   string1    1.0
1   string2    2.0
2  #Comment    3.0

True, False, and NA values, and thousands separators have defaults,
but can be explicitly specified, too. Supply the values you would like
as strings or lists of strings!

>>> pd.read_excel('tmp.xlsx', index_col=0,
...               na_values=['string1', 'string2'])  # doctest: +SKIP
       Name  Value
0       NaN      1
1       NaN      2
2  #Comment      3

Comment lines in the excel input file can be skipped using the `comment` kwarg

>>> pd.read_excel('tmp.xlsx', index_col=0, comment='#')  # doctest: +SKIP
      Name  Value
0  string1    1.0
1  string2    2.0
2     None    NaN
.z	str | intint | Sequence[int] | Nonebool | NoneDtypeArg | Nonez5Literal[('xlrd', 'openpyxl', 'odf', 'pyxlsb')] | NoneIterable[Hashable] | None4Sequence[int] | int | Callable[[int], object] | None
int | Nonebool
str | Nonestrintr   r$   )
sheet_nameheader	index_colsqueezedtypeenginetrue_valuesfalse_valuesskiprowsnrowskeep_default_na	na_filterverbose	thousandsdecimalcomment
skipfooterconvert_floatmangle_dupe_colsstorage_optionsreturnc                 C  s   d S N ior=   r>   namesr?   usecolsr@   rA   rB   
convertersrC   rD   rE   rF   	na_valuesrG   rH   rI   parse_datesdate_parserrJ   rK   rL   rM   rN   rO   rP   rS   rS   9/tmp/pip-unpacked-wheel-ck39h295/pandas/io/excel/_base.py
read_excelb  s    r]   zlist[IntStrT] | Nonezdict[IntStrT, DataFrame]c                 C  s   d S rR   rS   rT   rS   rS   r\   r]     s    rU   r=   z2.0)Zallowed_argsversionTF.z str | int | list[IntStrT] | Nonez$DataFrame | dict[IntStrT, DataFrame]c                 C  s   d}t | ts"d}t| ||d} n|r8|| jkr8tdz>| j||||||||	|
|||||||||||||||d}W 5 |r|   X |S )NFT)rP   rB   z_Engine should not be specified when passing an ExcelFile - ExcelFile already has the engine set)r=   r>   rV   r?   rW   r@   rA   rX   rC   rD   rE   rF   rY   rG   rH   rI   rZ   r[   rJ   rK   rL   rM   rN   rO   )
isinstance	ExcelFilerB   
ValueErrorcloseparse)rU   r=   r>   rV   r?   rW   r@   rA   rB   rX   rC   rD   rE   rF   rY   rG   rH   rI   rZ   r[   rJ   rK   rL   rM   rN   rO   rP   Zshould_closedatarS   rS   r\   r]     sL     


c                   @  s   e Zd Zd2ddddZeejdd Zejdd	 Zd
d Z	eejddddZ
ejddddZejddddZejddddZdddddZddd d!d"Zd3d'd(d(d)d*d+d+d,d-dd.dd.dd)dd/d0d1ZdS )4BaseExcelReaderNr   rP   c                 C  s   t |trt|}t|dd id| _t |t| jfsFt|d|dd| _t | jj| jrb| jj| _	nZt
| jjdr| jjd z| | jj| _	W q tk
r   |    Y qX ntdd S )	Nmethod)handlecompressionrbFrP   Zis_textreadr   zCMust explicitly set engine if not passing in buffer or path for io.)r`   bytesr   r'   handlesra   _workbook_classr(   ri   bookhasattrseekload_workbook	Exceptionrc   rb   )selffilepath_or_bufferrP   rS   rS   r\   __init__  s2    
    
zBaseExcelReader.__init__c                 C  s   d S rR   rS   rv   rS   rS   r\   rp     s    zBaseExcelReader._workbook_classc                 C  s   d S rR   rS   )rv   rw   rS   rS   r\   rt     s    zBaseExcelReader.load_workbookc                 C  s.   t | dr t | jdr | j  | j  d S )Nrq   rc   )rr   rq   rc   ro   ry   rS   rS   r\   rc     s    
zBaseExcelReader.closez	list[str]rQ   c                 C  s   d S rR   rS   ry   rS   rS   r\   sheet_names   s    zBaseExcelReader.sheet_namesr;   )namec                 C  s   d S rR   rS   rv   r|   rS   rS   r\   get_sheet_by_name%  s    z!BaseExcelReader.get_sheet_by_namer<   )indexc                 C  s   d S rR   rS   )rv   r   rS   rS   r\   get_sheet_by_index)  s    z"BaseExcelReader.get_sheet_by_indexr9   )rN   c                 C  s   d S rR   rS   )rv   sheetrN   rS   rS   r\   get_sheet_data-  s    zBaseExcelReader.get_sheet_dataNone)r   rQ   c                 C  s,   t | j}||kr(td| d| dd S )NzWorksheet index z is invalid, z worksheets found)lenr{   rb   )rv   r   Zn_sheetsrS   rS   r\   raise_if_bad_sheet_by_index1  s
    
z+BaseExcelReader.raise_if_bad_sheet_by_index)r|   rQ   c                 C  s   || j krtd| dd S )NzWorksheet named 'z' not found)r{   rb   r}   rS   rS   r\   raise_if_bad_sheet_by_name8  s    
z*BaseExcelReader.raise_if_bad_sheet_by_namer   Fr_   T(str | int | list[int] | list[str] | Noner3   r4   r5   r6   r7   r8   r:   )r=   r>   r?   r@   rA   rC   rD   rE   rF   rI   rJ   rK   rL   rM   rN   rO   c           )      K  s  |d krd}nt jdtt d t| d}t|tr@|}d}n,|d krT| j}d}nt|trf|g}n|g}t	t
tt tt f tt| }i }|D ]}|rtd|  t|tr| |}n
| |}| ||}t|dr|  t|}|st ||< qd}d}t|rDt|ts.td}t|dkrDd}|r\t	tt |d }d }|d k	rt|rt|tstg }dgt|d  } |D ]d}!t|
rt|
tst|!|
7 }!t||! | \||!< } |d k	rt||! |\}"}#||" q|o| o|d k	}$t|r|d kr4d}%n"t|trJd| }%ndt | }%|$rd|%d7 }%|%t|k rt|tst|D ]j}&||% |& }'t!|%d t|D ]D}!||! |& d	ks||! |& d kr|'||! |&< n||! |& }'qqzt"|f||||$||||	|
||d||||||||d
|}(|(j#|d||< |rTt|| trp|rp|| j$%||| _$W q t&k
r   t ||< Y qX q|r|S || S d S )NTzDconvert_float is deprecated and will be removed in a future version.
stacklevelFzReading sheet rc      r    )rV   r>   r?   has_index_namesr@   rA   rC   rD   rE   rF   rY   Zskip_blank_linesrZ   r[   rJ   rK   rL   rM   rW   rO   )rF   )'warningswarnFutureWarningr   r*   r`   listr{   r;   r   r   r
   r<   dictfromkeyskeysprintr~   r   r   rr   rc   r.   r$   r#   r   AssertionErrorr   r"   r+   r/   appendmaxranger0   rm   columnsZ	set_namesr   ))rv   r=   r>   rV   r?   rW   r@   rA   rC   rD   rE   rF   rY   rI   rZ   r[   rJ   rK   rL   rM   rN   rO   kwdsZret_dictsheetsoutputZ
asheetnamer   re   Zis_list_headerZis_len_one_list_headerheader_namesZcontrol_rowrowheader_name_r   offsetcollastparserrS   rS   r\   rd   <  s    

(










$zBaseExcelReader.parse)N)r   r   NNNNNNNNNNFFNNr_   Nr   NT)__name__
__module____qualname__rx   propertyabcabstractmethodrp   rt   rc   r{   r~   r   r   r   r   rd   rS   rS   rS   r\   rf     sP   
                     rf   )	metaclassc                
   @  s
  e Zd ZdZd0dddddddd	d
ddZdZeejddddZ	eejddddZ
ejd1ddddddddZejddddZd2dddddddd	d
ddZdd Zddd d!d"Zd#dd$d%Zedd&d'd(d)Zd*d+ Zd,d- Zddd.d/ZdS )3ExcelWritera  
    Class for writing DataFrame objects into excel sheets.

    Default is to use :
    * xlwt for xls
    * xlsxwriter for xlsx if xlsxwriter is installed otherwise openpyxl
    * odf for ods.
    See DataFrame.to_excel for typical usage.

    The writer should be used as a context manager. Otherwise, call `close()` to save
    and close any opened file handles.

    Parameters
    ----------
    path : str or typing.BinaryIO
        Path to xls or xlsx or ods file.
    engine : str (optional)
        Engine to use for writing. If None, defaults to
        ``io.excel.<extension>.writer``.  NOTE: can only be passed as a keyword
        argument.

        .. deprecated:: 1.2.0

            As the `xlwt <https://pypi.org/project/xlwt/>`__ package is no longer
            maintained, the ``xlwt`` engine will be removed in a future
            version of pandas.

    date_format : str, default None
        Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
    datetime_format : str, default None
        Format string for datetime objects written into Excel files.
        (e.g. 'YYYY-MM-DD HH:MM:SS').
    mode : {'w', 'a'}, default 'w'
        File mode to use (write or append). Append does not work with fsspec URLs.
    storage_options : dict, optional
        Extra options that make sense for a particular storage connection, e.g.
        host, port, username, password, etc., if using a URL that will
        be parsed by ``fsspec``, e.g., starting "s3://", "gcs://".

        .. versionadded:: 1.2.0

    if_sheet_exists : {'error', 'new', 'replace', 'overlay'}, default 'error'
        How to behave when trying to write to a sheet that already
        exists (append mode only).

        * error: raise a ValueError.
        * new: Create a new sheet, with a name determined by the engine.
        * replace: Delete the contents of the sheet before writing to it.
        * overlay: Write contents to the existing sheet without removing the old
          contents.

        .. versionadded:: 1.3.0

        .. versionchanged:: 1.4.0

           Added ``overlay`` option

    engine_kwargs : dict, optional
        Keyword arguments to be passed into the engine. These will be passed to
        the following functions of the respective engines:

        * xlsxwriter: ``xlsxwriter.Workbook(file, **engine_kwargs)``
        * openpyxl (write mode): ``openpyxl.Workbook(**engine_kwargs)``
        * openpyxl (append mode): ``openpyxl.load_workbook(file, **engine_kwargs)``
        * odswriter: ``odf.opendocument.OpenDocumentSpreadsheet(**engine_kwargs)``

        .. versionadded:: 1.3.0
    **kwargs : dict, optional
        Keyword arguments to be passed into the engine.

        .. deprecated:: 1.3.0

            Use engine_kwargs instead.

    Attributes
    ----------
    None

    Methods
    -------
    None

    Notes
    -----
    None of the methods and properties are considered public.

    For compatibility with CSV writers, ExcelWriter serializes lists
    and dicts to strings before writing.

    Examples
    --------
    Default usage:

    >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])  # doctest: +SKIP
    >>> with pd.ExcelWriter("path_to_file.xlsx") as writer:
    ...     df.to_excel(writer)  # doctest: +SKIP

    To write to separate sheets in a single file:

    >>> df1 = pd.DataFrame([["AAA", "BBB"]], columns=["Spam", "Egg"])  # doctest: +SKIP
    >>> df2 = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])  # doctest: +SKIP
    >>> with pd.ExcelWriter("path_to_file.xlsx") as writer:
    ...     df1.to_excel(writer, sheet_name="Sheet1")  # doctest: +SKIP
    ...     df2.to_excel(writer, sheet_name="Sheet2")  # doctest: +SKIP

    You can set the date format or datetime format:

    >>> from datetime import date, datetime  # doctest: +SKIP
    >>> df = pd.DataFrame(
    ...     [
    ...         [date(2014, 1, 31), date(1999, 9, 24)],
    ...         [datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)],
    ...     ],
    ...     index=["Date", "Datetime"],
    ...     columns=["X", "Y"],
    ... )  # doctest: +SKIP
    >>> with pd.ExcelWriter(
    ...     "path_to_file.xlsx",
    ...     date_format="YYYY-MM-DD",
    ...     datetime_format="YYYY-MM-DD HH:MM:SS"
    ... ) as writer:
    ...     df.to_excel(writer)  # doctest: +SKIP

    You can also append to an existing Excel file:

    >>> with pd.ExcelWriter("path_to_file.xlsx", mode="a", engine="openpyxl") as writer:
    ...     df.to_excel(writer, sheet_name="Sheet3")  # doctest: +SKIP

    Here, the `if_sheet_exists` parameter can be set to replace a sheet if it
    already exists:

    >>> with ExcelWriter(
    ...     "path_to_file.xlsx",
    ...     mode="a",
    ...     engine="openpyxl",
    ...     if_sheet_exists="replace",
    ... ) as writer:
    ...     df.to_excel(writer, sheet_name="Sheet1")  # doctest: +SKIP

    You can also write multiple DataFrames to a single sheet. Note that the
    ``if_sheet_exists`` parameter needs to be set to ``overlay``:

    >>> with ExcelWriter("path_to_file.xlsx",
    ...     mode="a",
    ...     engine="openpyxl",
    ...     if_sheet_exists="overlay",
    ... ) as writer:
    ...     df1.to_excel(writer, sheet_name="Sheet1")
    ...     df2.to_excel(writer, sheet_name="Sheet1", startcol=3)  # doctest: +SKIP

    You can store Excel file in RAM:

    >>> import io
    >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])
    >>> buffer = io.BytesIO()
    >>> with pd.ExcelWriter(buffer) as writer:
    ...     df.to_excel(writer)

    You can pack Excel file into zip archive:

    >>> import zipfile  # doctest: +SKIP
    >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])  # doctest: +SKIP
    >>> with zipfile.ZipFile("path_to_file.zip", "w") as zf:
    ...     with zf.open("filename.xlsx", "w") as buffer:
    ...         with pd.ExcelWriter(buffer) as writer:
    ...             df.to_excel(writer)  # doctest: +SKIP

    You can specify additional arguments to the underlying engine:

    >>> with pd.ExcelWriter(
    ...     "path_to_file.xlsx",
    ...     engine="xlsxwriter",
    ...     engine_kwargs={"options": {"nan_inf_to_errors": True}}
    ... ) as writer:
    ...     df.to_excel(writer)  # doctest: +SKIP

    In append mode, ``engine_kwargs`` are passed through to
    openpyxl's ``load_workbook``:

    >>> with pd.ExcelWriter(
    ...     "path_to_file.xlsx",
    ...     engine="openpyxl",
    ...     mode="a",
    ...     engine_kwargs={"keep_vba": True}
    ... ) as writer:
    ...     df.to_excel(writer, sheet_name="Sheet2")  # doctest: +SKIP
    Nwz)FilePath | WriteExcelBuffer | ExcelWriterr:   r;   r   z6Literal[('error', 'new', 'replace', 'overlay')] | Nonezdict | None)pathrB   date_formatdatetime_formatmoderP   if_sheet_existsengine_kwargsc	              
   K  s*  |	r&|d k	rt dtjdtt d | tkr |d ksJt|tr|dkrt|trntj	
|d dd  }
nd}
z.tjd|
 d	d
d}|dkrt|
dd}W n4 tk
r } zt d|
 d|W 5 d }~X Y nX |dkr
tjdd
d}|dkr
tjdtt d |d k	stt|} t| S )Nz*Cannot use both engine_kwargs and **kwargsz9Use of **kwargs is deprecated, use engine_kwargs instead.r   autor   xlsx	io.excel.z.writerTZsilentwriterr   zNo engine for filetype: ''Zxlwtzio.excel.xls.writera  As the xlwt package is no longer maintained, the xlwt engine will be removed in a future version of pandas. This is the only engine in pandas that supports writing in the xls format. Install openpyxl and write to an xlsx file instead. You can set the option io.excel.xls.writer to 'xlwt' to silence this warning. While this option is deprecated and will also raise a warning, it can be globally set and the warning suppressed.)rb   r   r   r   r   r   r`   r;   osr   splitextr   
get_optionr,   KeyErrorr   r-   object__new__)clsr   rB   r   r   r   rP   r   r   kwargsexterrZxls_config_enginerS   rS   r\   r     sB    

$
 
zExcelWriter.__new__ztuple[str, ...] | list[str]rz   c                 C  s   dS )z'Extensions that writer engine supports.NrS   ry   rS   rS   r\   supported_extensions	  s    z ExcelWriter.supported_extensionsc                 C  s   dS )zName of engine.NrS   ry   rS   rS   r\   rB     s    zExcelWriter.enginer   r<   ztuple[int, int] | Noner   )r=   startrowstartcolfreeze_panesrQ   c                 C  s   dS )a  
        Write given formatted cells into Excel an excel sheet

        Parameters
        ----------
        cells : generator
            cell of formatted data to save to Excel sheet
        sheet_name : str, default None
            Name of Excel sheet, if None, then use self.cur_sheet
        startrow : upper left cell row to dump data frame
        startcol : upper left cell column to dump data frame
        freeze_panes: int tuple of length 2
            contains the bottom-most row and right-most column to freeze
        NrS   )rv   cellsr=   r   r   r   rS   rS   r\   write_cells  s    zExcelWriter.write_cellsc                 C  s   dS )z(
        Save workbook to disk.
        NrS   ry   rS   rS   r\   save.  s    zExcelWriter.savec	                 K  s   t |tr$tj|d }
| |
 d|kr4|d7 }|dd}ttt	t
 |dd id| _t |tsxt|||dd| _i | _d | _|d krd	| _n|| _|d krd
| _n|| _|| _|dkrtd| d|rd|krtd|d krd}|| _d S )Nr   bazr+rj   )rj   Frl   z
YYYY-MM-DDzYYYY-MM-DD HH:MM:SS)Nerrornewreplaceoverlayr   z^' is not valid for if_sheet_exists. Valid options are 'error', 'new', 'replace' and 'overlay'.z7if_sheet_exists is only valid in append mode (mode='a')r   )r`   r;   r   r   r   check_extensionr   r'   r   r   rn   ro   r   r(   r   	cur_sheetr   r   r   rb   r   )rv   r   rB   r   r   r   rP   r   r   r   r   rS   rS   r\   rx   5  sF    

 
   
zExcelWriter.__init__c                 C  s   t | jjddS )Nr|   r   )getattrro   ri   ry   rS   rS   r\   
__fspath__n  s    zExcelWriter.__fspath__)r=   rQ   c                 C  s"   |d kr| j }|d krtd|S )Nz7Must pass explicit sheet_name or set cur_sheet property)r   rb   )rv   r=   rS   rS   r\   _get_sheet_nameq  s
    zExcelWriter._get_sheet_nameztuple[object, str | None]c                 C  s   d}t |rt|}nrt|r(t|}n`t|r:t|}nNt|tjrN| j}n:t|tj	rb| j
}n&t|tjr| d }d}nt|}||fS )aG  
        Convert numpy types to Python types for the Excel writers.

        Parameters
        ----------
        val : object
            Value to be written into cells

        Returns
        -------
        Tuple with the first element being the converted value and the second
            being an optional format
        NiQ 0)r"   r<   r!   floatr    r9   r`   datetimer   dater   	timedeltatotal_secondsr;   )rv   valfmtrS   rS   r\   _value_with_fmtx  s     


zExcelWriter._value_with_fmtzLiteral[True])r   rQ   c                   sP     dr dd  t fdd| jD sHtd| j d  dnd	S dS )
z
        checks that path's extension against the Writer's supported
        extensions.  If it isn't supported, raises UnsupportedFiletypeError.
        r_   r   Nc                 3  s   | ]} |kV  qd S rR   rS   ).0	extensionr   rS   r\   	<genexpr>  s   z.ExcelWriter.check_extension.<locals>.<genexpr>zInvalid extension for engine 'z': 'r   T)
startswithanyr   rb   rB   )r   r   rS   r   r\   r     s    
zExcelWriter.check_extensionc                 C  s   | S rR   rS   ry   rS   rS   r\   	__enter__  s    zExcelWriter.__enter__c                 C  s   |    d S rR   rc   rv   exc_type	exc_value	tracebackrS   rS   r\   __exit__  s    zExcelWriter.__exit__c                 C  s   |    | j  dS )z+synonym for save, to make it more file-likeN)r   ro   rc   ry   rS   rS   r\   rc     s    zExcelWriter.close)NNNr   NNN)Nr   r   N)NNNr   NNN)r   r   r   __doc__r   r   r   r   r   r   rB   r   r   rx   r   r   r   classmethodr   r   r   rc   rS   rS   rS   r\   r     sR    U       ?    	       9"r   )s   	    s   	    s   	    s   ࡱs   PKrP   rg   zFilePath | ReadBuffer[bytes])content_or_pathrP   rQ   c              	     s   t | trt| } t| d|dd}|j}|d |t}|dkrPtdnt |ts^t	| |d t
 fddtD rW 5 Q R  d	S  tsW 5 Q R  dS t|}d
d | D }d|krW 5 Q R  dS d|krW 5 Q R  dS d|krW 5 Q R  dS W 5 Q R  dS Q R X dS )a8  
    Inspect the path or content of an excel file and get its format.

    Adopted from xlrd: https://github.com/python-excel/xlrd.

    Parameters
    ----------
    content_or_path : str or file-like object
        Path to file or content of file to inspect. May be a URL.
    {storage_options}

    Returns
    -------
    str or None
        Format of file if it can be determined.

    Raises
    ------
    ValueError
        If resulting stream is empty.
    BadZipFile
        If resulting stream does not have an XLS signature and is not a valid zipfile.
    rk   Frl   r   Nzstream is emptyc                 3  s   | ]}  |V  qd S rR   )r   )r   sigpeekrS   r\   r     s     z'inspect_excel_format.<locals>.<genexpr>xlsc                 S  s   g | ]}| d d qS )\/)r   lower)r   r|   rS   rS   r\   
<listcomp>  s     z(inspect_excel_format.<locals>.<listcomp>zxl/workbook.xmlr   zxl/workbook.binZxlsbzcontent.xmlZodszip)r`   rn   r   r(   ri   rs   rm   	PEEK_SIZErb   r   r   XLS_SIGNATURESr   ZIP_SIGNATUREzipfileZipFilenamelist)r   rP   ri   streambufzfZcomponent_namesrS   r   r\   inspect_excel_format  s<    
   






r  c                   @  s   e Zd ZU dZddlmZ ddlmZ ddlm	Z	 ddl
mZ eeee	dZded	< d.dddddZdd Zd/dddddddddddddddddZed d! Zed"d# Zd$d%d&d'Zd(d) Zd*d+ Zd,d- Zd
S )0ra   aU  
    Class for parsing tabular excel sheets into DataFrame objects.

    See read_excel for more documentation.

    Parameters
    ----------
    path_or_buffer : str, bytes, path object (pathlib.Path or py._path.local.LocalPath),
        a file-like object, xlrd workbook or openpyxl workbook.
        If a string or path object, expected to be a path to a
        .xls, .xlsx, .xlsb, .xlsm, .odf, .ods, or .odt file.
    engine : str, default None
        If io is not a buffer or path, this must be set to identify io.
        Supported engines: ``xlrd``, ``openpyxl``, ``odf``, ``pyxlsb``
        Engine compatibility :

        - ``xlrd`` supports old-style Excel files (.xls).
        - ``openpyxl`` supports newer Excel file formats.
        - ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).
        - ``pyxlsb`` supports Binary Excel files.

        .. versionchanged:: 1.2.0

           The engine `xlrd <https://xlrd.readthedocs.io/en/latest/>`_
           now only supports old-style ``.xls`` files.
           When ``engine=None``, the following logic will be
           used to determine the engine:

           - If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
             then `odf <https://pypi.org/project/odfpy/>`_ will be used.
           - Otherwise if ``path_or_buffer`` is an xls format,
             ``xlrd`` will be used.
           - Otherwise if ``path_or_buffer`` is in xlsb format,
             `pyxlsb <https://pypi.org/project/pyxlsb/>`_ will be used.

           .. versionadded:: 1.3.0
           - Otherwise if `openpyxl <https://pypi.org/project/openpyxl/>`_ is installed,
             then ``openpyxl`` will be used.
           - Otherwise if ``xlrd >= 2.0`` is installed, a ``ValueError`` will be raised.
           - Otherwise ``xlrd`` will be used and a ``FutureWarning`` will be raised.
             This case will raise a ``ValueError`` in a future version of pandas.

           .. warning::

            Please do not report issues when using ``xlrd`` to read ``.xlsx`` files.
            This is not supported, switch to using ``openpyxl`` instead.
    r   )	ODFReader)OpenpyxlReader)PyxlsbReader)
XlrdReader)xlrdZopenpyxlZodfZpyxlsbzMapping[str, Any]_enginesNr:   r   )rB   rP   c                 C  s  |d k	r || j kr td| t|tr2t|}|| _t|| _tdddd krXd }ndd l	}t
t|}d }|d kr|d k	rt||jrd}nt||d}|d krtdtjd	| d
dd}|dkrt|dd}|dkrt|d k	rt|d krt||jr
d}nt||d}|rF|dkrF|t
dkrFtd| dn.|rt|dkrtt }tjd| dt|d |d k	st|| _|| _| j | | j|d| _d S )NzUnknown engine: r  ignore)errorsr   r   )r   rP   zLExcel file format cannot be determined, you must specify an engine manually.r   z.readerTr   r   readerr   rg   2zYour version of xlrd is zM. In xlrd >= 2.0, only the xls format is supported. Install openpyxl instead.r   )r	  rb   r`   rn   r   rU   r)   _ior   r  r&   r   ZBookr  r   r   r,   r   r   r   r   r   rB   rP   _reader)rv   Zpath_or_bufferrB   rP   Zxlrd_versionr  r   r   rS   rS   r\   rx   @  s`    

 
 

zExcelFile.__init__c                 C  s   | j S rR   )r  ry   rS   rS   r\   r     s    zExcelFile.__fspath__FTr   r3   r4   r6   r7   r8   r<   r9   z7DataFrame | dict[str, DataFrame] | dict[int, DataFrame])r=   r>   r?   r@   rC   rD   rE   rF   rJ   rL   rM   rN   rO   rQ   c                 K  s:   | j jf |||||||||	|
|||||||||d|S )a8  
        Parse specified sheet(s) into a DataFrame.

        Equivalent to read_excel(ExcelFile, ...)  See the read_excel
        docstring for more info on accepted parameters.

        Returns
        -------
        DataFrame or dict of DataFrames
            DataFrame from the passed in Excel file.
        )r=   r>   rV   r?   rW   r@   rX   rC   rD   rE   rF   rY   rZ   r[   rJ   rL   rM   rN   rO   )r  rd   )rv   r=   r>   rV   r?   rW   r@   rX   rC   rD   rE   rF   rY   rZ   r[   rJ   rL   rM   rN   rO   r   rS   rS   r\   rd     s.    "zExcelFile.parsec                 C  s   | j jS rR   )r  rq   ry   rS   rS   r\   rq     s    zExcelFile.bookc                 C  s   | j jS rR   )r  r{   ry   rS   rS   r\   r{     s    zExcelFile.sheet_namesr   rz   c                 C  s   | j   dS )zclose io if necessaryN)r  rc   ry   rS   rS   r\   rc     s    zExcelFile.closec                 C  s   | S rR   rS   ry   rS   rS   r\   r     s    zExcelFile.__enter__c                 C  s   |    d S rR   r   r   rS   rS   r\   r     s    zExcelFile.__exit__c                 C  s&   z|    W n tk
r    Y nX d S rR   )rc   AttributeErrorry   rS   rS   r\   __del__  s    zExcelFile.__del__)NN)r   r   NNNNNNNNNNFNNNr   NT)r   r   r   r   Zpandas.io.excel._odfreaderr  Zpandas.io.excel._openpyxlr  Zpandas.io.excel._pyxlsbr  Zpandas.io.excel._xlrdr  r	  __annotations__rx   r   rd   r   rq   r{   rc   r   r   r  rS   rS   rS   r\   ra     sT   
0
  M                   *9

ra   ).........................).........................)r   r   NNNNNNNNNNNNTTFFNNr_   Nr   NTN)N)U
__future__r   r   r   rU   r   r   textwrapr   typingr   r   r   r   r	   r
   r   r   r   r   r   r   r   r   Zpandas._configr   Zpandas._libs.parsersr   Zpandas._typingr   r   r   r   r   r   Zpandas.compat._optionalr   r   Zpandas.errorsr   Zpandas.util._decoratorsr   r   r   Zpandas.util._exceptionsr   Zpandas.core.dtypes.commonr    r!   r"   r#   Zpandas.core.framer$   Zpandas.core.shared_docsr%   Zpandas.util.versionr&   Zpandas.io.commonr'   r(   r)   r*   Zpandas.io.excel._utilr+   r,   r-   r.   r/   Zpandas.io.parsersr0   joinsortedZ_read_excel_docr]   ABCMetarf   r   r   r   r   mapr   r   r  ra   rS   rS   rS   r\   <module>   s   8 vw                           :!                         :!                          <J     F ?