U
    b )                     @  s&  d Z ddlmZ ddlmZmZmZ ddlZddlm	  m
Z
 ddlmZmZ ddlmZ ddlmZmZmZmZmZmZmZmZmZmZ ddlmZ dd	lmZ ddl m!  m"Z# erdd
lm$Z$ ddl%m&Z& e
j'Z'dZ(dddddZ)dd Z*dd Z+dd Z,d"ddddddddZ-d d! Z.dS )#zM
Table Schema builders

https://specs.frictionlessdata.io/json-table-schema/
    )annotations)TYPE_CHECKINGAnycastN)DtypeObjJSONSerializable)	_registry)
is_bool_dtypeis_categorical_dtypeis_datetime64_dtypeis_datetime64tz_dtypeis_extension_array_dtypeis_integer_dtypeis_numeric_dtypeis_period_dtypeis_string_dtypeis_timedelta64_dtype)CategoricalDtype)	DataFrame)Series)
MultiIndexz1.4.0r   str)xreturnc                 C  sx   t | rdS t| rdS t| r$dS t| s<t| s<t| r@dS t| rLdS t| rXdS t| rddS t	| rpdS dS dS )	a  
    Convert a NumPy / pandas type to its corresponding json_table.

    Parameters
    ----------
    x : np.dtype or ExtensionDtype

    Returns
    -------
    str
        the Table Schema data types

    Notes
    -----
    This table shows the relationship between NumPy / pandas dtypes,
    and Table Schema dtypes.

    ==============  =================
    Pandas type     Table Schema type
    ==============  =================
    int64           integer
    float64         number
    bool            boolean
    datetime64[ns]  datetime
    timedelta64[ns] duration
    object          str
    categorical     any
    =============== =================
    integerbooleannumberdatetimedurationanystringN)
r   r	   r   r   r   r   r   r
   r   r   )r    r!   @/tmp/pip-unpacked-wheel-ck39h295/pandas/io/json/_table_schema.pyas_json_table_type0   s"    r#   c                 C  s   t j| jj rf| jj}t|dkr:| jjdkr:td n(t|dkrbtdd |D rbtd | S | 	 } | jj
dkrt | jj| j_n| jjpd| j_| S )z?Sets index names to 'index' for regular, or 'level_x' for Multi   indexz-Index name of 'index' is not round-trippable.c                 s  s   | ]}| d V  qdS Zlevel_N
startswith.0r   r!   r!   r"   	<genexpr>h   s     z$set_default_names.<locals>.<genexpr>z<Index names beginning with 'level_' are not round-trippable.)comZall_not_noner%   nameslennamewarningswarnr   copynlevelsZfill_missing_names)dataZnmsr!   r!   r"   set_default_namesb   s    r5   c                 C  s   | j }| jd krd}n| j}|t|d}t|rX|j}|j}dt|i|d< ||d< n>t|rn|jj	|d< n(t
|r|jj|d< nt|r|j|d< |S )	Nvalues)r/   typeenumconstraintsorderedfreqtzextDtype)dtyper/   r#   r
   
categoriesr:   listr   r;   Zfreqstrr   r<   zoner   )Zarrr>   r/   fieldZcatsr:   r!   r!   r"   !convert_pandas_type_to_json_fieldv   s&    


rC   c                 C  s   | d }|dkrdS |dkr dS |dkr,dS |dkr8d	S |d
krDdS |dkrl|  drfd| d  dS dS nJ|dkrd| krd| krt| d d | d dS d| krt| d S dS td| dS )a  
    Converts a JSON field descriptor into its corresponding NumPy / pandas type

    Parameters
    ----------
    field
        A JSON field descriptor

    Returns
    -------
    dtype

    Raises
    ------
    ValueError
        If the type of the provided field is unknown or currently unsupported

    Examples
    --------
    >>> convert_json_field_to_pandas_type({"name": "an_int", "type": "integer"})
    'int64'

    >>> convert_json_field_to_pandas_type(
    ...     {
    ...         "name": "a_categorical",
    ...         "type": "any",
    ...         "constraints": {"enum": ["a", "b", "c"]},
    ...         "ordered": True,
    ...     }
    ... )
    CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)

    >>> convert_json_field_to_pandas_type({"name": "a_datetime", "type": "datetime"})
    'datetime64[ns]'

    >>> convert_json_field_to_pandas_type(
    ...     {"name": "a_datetime_with_tz", "type": "datetime", "tz": "US/Central"}
    ... )
    'datetime64[ns, US/Central]'
    r7   r    objectr   Zint64r   Zfloat64r   boolr   timedelta64r   r<   zdatetime64[ns, ]zdatetime64[ns]r   r9   r:   r8   )r?   r:   r=   z#Unsupported or invalid field type: N)getr   registryfind
ValueError)rB   typr!   r!   r"   !convert_json_field_to_pandas_type   s2    )

 rM   TzDataFrame | SeriesrE   zbool | Nonezdict[str, JSONSerializable])r4   r%   primary_keyversionr   c                 C  s"  |dkrt | } i }g }|r~| jjdkrntd| j| _t| jj| jjD ]"\}}t|}||d< || qHn|t| j | j	dkr| 
 D ]\}	}
|t|
 qn|t|  ||d< |r| jjr|dkr| jjdkr| jjg|d< n| jj|d< n|dk	r||d< |rt|d< |S )	aG  
    Create a Table schema from ``data``.

    Parameters
    ----------
    data : Series, DataFrame
    index : bool, default True
        Whether to include ``data.index`` in the schema.
    primary_key : bool or None, default True
        Column names to designate as the primary key.
        The default `None` will set `'primaryKey'` to the index
        level or levels if the index is unique.
    version : bool, default True
        Whether to include a field `pandas_version` with the version
        of pandas that last revised the table schema. This version
        can be different from the installed pandas version.

    Returns
    -------
    schema : dict

    Notes
    -----
    See `Table Schema
    <https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for
    conversion types.
    Timedeltas as converted to ISO8601 duration format with
    9 decimal places after the seconds field for nanosecond precision.

    Categoricals are converted to the `any` dtype, and use the `enum` field
    constraint to list the allowed values. The `ordered` attribute is included
    in an `ordered` field.

    Examples
    --------
    >>> df = pd.DataFrame(
    ...     {'A': [1, 2, 3],
    ...      'B': ['a', 'b', 'c'],
    ...      'C': pd.date_range('2016-01-01', freq='d', periods=3),
    ...     }, index=pd.Index(range(3), name='idx'))
    >>> build_table_schema(df)
    {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'primaryKey': ['idx'], 'pandas_version': '1.4.0'}
    Tr$   r   r/   fieldsN
primaryKeyZpandas_version)r5   r%   r3   r   ziplevelsr-   rC   appendndimitemsZ	is_uniquer/   TABLE_SCHEMA_VERSION)r4   r%   rN   rO   schemarP   levelr/   Z	new_fieldcolumnsr!   r!   r"   build_table_schema   s4    7

r\   c                 C  s   t | |d}dd |d d D }t|d |d| }dd	 |d d D }d
| kr`td||}d|d kr||d d }t|jjdkr|jj	dkrd|j_	ndd |jjD |j_|S )a  
    Builds a DataFrame from a given schema

    Parameters
    ----------
    json :
        A JSON table schema
    precise_float : bool
        Flag controlling precision when decoding string to double values, as
        dictated by ``read_json``

    Returns
    -------
    df : DataFrame

    Raises
    ------
    NotImplementedError
        If the JSON table schema contains either timezone or timedelta data

    Notes
    -----
        Because :func:`DataFrame.to_json` uses the string 'index' to denote a
        name-less :class:`Index`, this function sets the name of the returned
        :class:`DataFrame` to ``None`` when said string is encountered with a
        normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
        applies to any strings beginning with 'level_'. Therefore, an
        :class:`Index` name of 'index'  and :class:`MultiIndex` names starting
        with 'level_' are not supported.

    See Also
    --------
    build_table_schema : Inverse function.
    pandas.read_json
    )precise_floatc                 S  s   g | ]}|d  qS r/   r!   r*   rB   r!   r!   r"   
<listcomp>V  s     z&parse_table_schema.<locals>.<listcomp>rX   rP   r4   )columnsc                 S  s   i | ]}|d  t |qS r^   )rM   r_   r!   r!   r"   
<dictcomp>Y  s    z&parse_table_schema.<locals>.<dictcomp>rF   z<table="orient" can not yet read ISO-formatted Timedelta datarQ   r$   r%   Nc                 S  s   g | ]}| d rdn|qS r&   r'   r)   r!   r!   r"   r`   l  s    )
loadsr   r6   NotImplementedErrorZastypeZ	set_indexr.   r%   r-   r/   )jsonr]   tableZ	col_orderZdfZdtypesr!   r!   r"   parse_table_schema1  s(    $



rg   )TNT)/__doc__
__future__r   typingr   r   r   r0   Zpandas._libs.jsonZ_libsre   Zpandas._typingr   r   Zpandas.core.dtypes.baser   rI   Zpandas.core.dtypes.commonr	   r
   r   r   r   r   r   r   r   r   Zpandas.core.dtypes.dtypesr   Zpandasr   Zpandas.core.commoncorecommonr,   r   Zpandas.core.indexes.multir   rc   rW   r#   r5   rC   rM   r\   rg   r!   r!   r!   r"   <module>   s0   02H   [