U
    ȽbK                  5   @  s  U d Z ddlmZ ddlmZ ddlZddlZddlmZ ddl	m
Z
mZmZmZ ddlZddlZddlm  mZ ddlmZ ddlmZmZmZmZmZmZmZ dd	lmZm Z  dd
l!m"Z"m#Z# ddl$m%Z% ddl&m'Z' ddl(m)Z)m*Z*m+Z+m,Z, ddl-m.Z. ddl/m0Z0 ddl1m2Z2 ddl3m4Z4m5Z5m6Z6 ddl7m8Z8 ddl9m:Z:m;Z;m<Z< ddl=m>Z> ddl?m@Z@mAZA dedBeCeddd d ZDddddddZEdd dd!ZFd"hZGd#d$hZHd"d$d%d&d'd(d)d*d+d,d-d.d/d0d1d2d3d4d5d6d7d#hZIG d8d9 d9eZJeJdd:eJdd:eJdd;eJdd<d=ZKd>eLd?< dd@dAZMdBdC ZNdDdEdFdGZOe#ddHgdIdJe"eDjPdKdLdMe2dN e2dO dPejQddejQdddejQddddddddddddddddddddddddddQddRejRdddddSdddddeEd# dddf3dDdTdUdVdWdXdYdZd[dKZSe#ddHgdIdJe"eDjPd\d]d^e2dN e2dO dPejQddejQdddejQddddddddddddddddddddddddddQddRejRdddddSdddddeEd# dddf3dDdTdUdVdWdXdYdZd_d\ZTe#ddHgd`dJddDdadbdcdddedfdgZUG dhdi diejVZWdjdk ZXddldmZYdndo ZZdpdq Z[drdsdtdUdsdududvdwdxdydzd{d|Z\dyd}d~ddZ]dZ^dddddZ_ddydydddZ`dydd~ddZadS )zM
Module contains tools for processing files into DataFrames or other objects
    )annotations)abcN)fill)IOAnyCallable
NamedTuple)STR_NA_VALUES)	ArrayLikeCompressionOptions	CSVEngineDtypeArgFilePathReadCsvBufferStorageOptions)AbstractMethodErrorParserWarning)Appenderdeprecate_nonkeyword_arguments)find_stack_level)validate_bool_kwarg)is_file_likeis_float
is_integeris_list_like)	DataFrame)
RangeIndex)_shared_docs)	IOHandles
get_handlevalidate_header_arg)ArrowParserWrapper)
ParserBaseis_index_colparser_defaults)CParserWrapper)FixedWidthFieldParserPythonParseraI  
{summary}

Also supports optionally iterating or breaking of the file
into chunks.

Additional help can be found in the online docs for
`IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.

Parameters
----------
filepath_or_buffer : str, path object or file-like object
    Any valid string path is acceptable. The string could be a URL. Valid
    URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
    expected. A local file could be: file://localhost/path/to/table.csv.

    If you want to pass in a path object, pandas accepts any ``os.PathLike``.

    By file-like object, we refer to objects with a ``read()`` method, such as
    a file handle (e.g. via builtin ``open`` function) or ``StringIO``.
sep : str, default {_default_sep}
    Delimiter to use. If sep is None, the C engine cannot automatically detect
    the separator, but the Python parsing engine can, meaning the latter will
    be used and automatically detect the separator by Python's builtin sniffer
    tool, ``csv.Sniffer``. In addition, separators longer than 1 character and
    different from ``'\s+'`` will be interpreted as regular expressions and
    will also force the use of the Python parsing engine. Note that regex
    delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``.
delimiter : str, default ``None``
    Alias for sep.
header : int, list of int, None, default 'infer'
    Row number(s) to use as the column names, and the start of the
    data.  Default behavior is to infer the column names: if no names
    are passed the behavior is identical to ``header=0`` and column
    names are inferred from the first line of the file, if column
    names are passed explicitly then the behavior is identical to
    ``header=None``. Explicitly pass ``header=0`` to be able to
    replace existing names. The header can be a list of integers that
    specify row locations for a multi-index on the columns
    e.g. [0,1,3]. Intervening rows that are not specified will be
    skipped (e.g. 2 in this example is skipped). Note that this
    parameter ignores commented lines and empty lines if
    ``skip_blank_lines=True``, so ``header=0`` denotes the first line of
    data rather than the first line of the file.
names : array-like, optional
    List of column names to use. If the file contains a header row,
    then you should explicitly pass ``header=0`` to override the column names.
    Duplicates in this list are not allowed.
index_col : int, str, sequence of int / str, or False, optional, default ``None``
  Column(s) to use as the row labels of the ``DataFrame``, either given as
  string name or column index. If a sequence of int / str is given, a
  MultiIndex is used.

  Note: ``index_col=False`` can be used to force pandas to *not* use the first
  column as the index, e.g. when you have a malformed file with delimiters at
  the end of each line.
usecols : list-like or callable, optional
    Return a subset of the columns. If list-like, all elements must either
    be positional (i.e. integer indices into the document columns) or strings
    that correspond to column names provided either by the user in `names` or
    inferred from the document header row(s). If ``names`` are given, the document
    header row(s) are not taken into account. For example, a valid list-like
    `usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``.
    Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.
    To instantiate a DataFrame from ``data`` with element order preserved use
    ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns
    in ``['foo', 'bar']`` order or
    ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``
    for ``['bar', 'foo']`` order.

    If callable, the callable function will be evaluated against the column
    names, returning names where the callable function evaluates to True. An
    example of a valid callable argument would be ``lambda x: x.upper() in
    ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster
    parsing time and lower memory usage.
squeeze : bool, default False
    If the parsed data only contains one column then return a Series.

    .. deprecated:: 1.4.0
        Append ``.squeeze("columns")`` to the call to ``{func_name}`` to squeeze
        the data.
prefix : str, optional
    Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ...

    .. deprecated:: 1.4.0
       Use a list comprehension on the DataFrame's columns after calling ``read_csv``.
mangle_dupe_cols : bool, default True
    Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than
    'X'...'X'. Passing in False will cause data to be overwritten if there
    are duplicate names in the columns.
dtype : Type name or dict of column -> type, optional
    Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32,
    'c': 'Int64'}}
    Use `str` or `object` together with suitable `na_values` settings
    to preserve and not interpret dtype.
    If converters are specified, they will be applied INSTEAD
    of dtype conversion.
engine : {{'c', 'python', 'pyarrow'}}, optional
    Parser engine to use. The C and pyarrow engines are faster, while the python engine
    is currently more feature-complete. Multithreading is currently only supported by
    the pyarrow engine.

    .. versionadded:: 1.4.0

        The "pyarrow" engine was added as an *experimental* engine, and some features
        are unsupported, or may not work correctly, with this engine.
converters : dict, optional
    Dict of functions for converting values in certain columns. Keys can either
    be integers or column labels.
true_values : list, optional
    Values to consider as True.
false_values : list, optional
    Values to consider as False.
skipinitialspace : bool, default False
    Skip spaces after delimiter.
skiprows : list-like, int or callable, optional
    Line numbers to skip (0-indexed) or number of lines to skip (int)
    at the start of the file.

    If callable, the callable function will be evaluated against the row
    indices, returning True if the row should be skipped and False otherwise.
    An example of a valid callable argument would be ``lambda x: x in [0, 2]``.
skipfooter : int, default 0
    Number of lines at bottom of file to skip (Unsupported with engine='c').
nrows : int, optional
    Number of rows of file to read. Useful for reading pieces of large files.
na_values : scalar, str, list-like, or dict, optional
    Additional strings to recognize as NA/NaN. If dict passed, specific
    per-column NA values.  By default the following values are interpreted as
    NaN: 'z', 'F   z    )subsequent_indentaS)  '.
keep_default_na : bool, default True
    Whether or not to include the default NaN values when parsing the data.
    Depending on whether `na_values` is passed in, the behavior is as follows:

    * If `keep_default_na` is True, and `na_values` are specified, `na_values`
      is appended to the default NaN values used for parsing.
    * If `keep_default_na` is True, and `na_values` are not specified, only
      the default NaN values are used for parsing.
    * If `keep_default_na` is False, and `na_values` are specified, only
      the NaN values specified `na_values` are used for parsing.
    * If `keep_default_na` is False, and `na_values` are not specified, no
      strings will be parsed as NaN.

    Note that if `na_filter` is passed in as False, the `keep_default_na` and
    `na_values` parameters will be ignored.
na_filter : bool, default True
    Detect missing value markers (empty strings and the value of na_values). In
    data without any NAs, passing na_filter=False can improve the performance
    of reading a large file.
verbose : bool, default False
    Indicate number of NA values placed in non-numeric columns.
skip_blank_lines : bool, default True
    If True, skip over blank lines rather than interpreting as NaN values.
parse_dates : bool or list of int or names or list of lists or dict, default False
    The behavior is as follows:

    * boolean. If True -> try parsing the index.
    * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
      each as a separate date column.
    * list of lists. e.g.  If [[1, 3]] -> combine columns 1 and 3 and parse as
      a single date column.
    * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call
      result 'foo'

    If a column or index cannot be represented as an array of datetimes,
    say because of an unparsable value or a mixture of timezones, the column
    or index will be returned unaltered as an object data type. For
    non-standard datetime parsing, use ``pd.to_datetime`` after
    ``pd.read_csv``. To parse an index or column with a mixture of timezones,
    specify ``date_parser`` to be a partially-applied
    :func:`pandas.to_datetime` with ``utc=True``. See
    :ref:`io.csv.mixed_timezones` for more.

    Note: A fast-path exists for iso8601-formatted dates.
infer_datetime_format : bool, default False
    If True and `parse_dates` is enabled, pandas will attempt to infer the
    format of the datetime strings in the columns, and if it can be inferred,
    switch to a faster method of parsing them. In some cases this can increase
    the parsing speed by 5-10x.
keep_date_col : bool, default False
    If True and `parse_dates` specifies combining multiple columns then
    keep the original columns.
date_parser : function, optional
    Function to use for converting a sequence of string columns to an array of
    datetime instances. The default uses ``dateutil.parser.parser`` to do the
    conversion. Pandas will try to call `date_parser` in three different ways,
    advancing to the next if an exception occurs: 1) Pass one or more arrays
    (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
    string values from the columns defined by `parse_dates` into a single array
    and pass that; and 3) call `date_parser` once for each row using one or
    more strings (corresponding to the columns defined by `parse_dates`) as
    arguments.
dayfirst : bool, default False
    DD/MM format dates, international and European format.
cache_dates : bool, default True
    If True, use a cache of unique, converted dates to apply the datetime
    conversion. May produce significant speed-up when parsing duplicate
    date strings, especially ones with timezone offsets.

    .. versionadded:: 0.25.0
iterator : bool, default False
    Return TextFileReader object for iteration or getting chunks with
    ``get_chunk()``.

    .. versionchanged:: 1.2

       ``TextFileReader`` is a context manager.
chunksize : int, optional
    Return TextFileReader object for iteration.
    See the `IO Tools docs
    <https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_
    for more information on ``iterator`` and ``chunksize``.

    .. versionchanged:: 1.2

       ``TextFileReader`` is a context manager.
{decompression_options}

    .. versionchanged:: 1.4.0 Zstandard support.

thousands : str, optional
    Thousands separator.
decimal : str, default '.'
    Character to recognize as decimal point (e.g. use ',' for European data).
lineterminator : str (length 1), optional
    Character to break file into lines. Only valid with C parser.
quotechar : str (length 1), optional
    The character used to denote the start and end of a quoted item. Quoted
    items can include the delimiter and it will be ignored.
quoting : int or csv.QUOTE_* instance, default 0
    Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of
    QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).
doublequote : bool, default ``True``
   When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate
   whether or not to interpret two consecutive quotechar elements INSIDE a
   field as a single ``quotechar`` element.
escapechar : str (length 1), optional
    One-character string used to escape other characters.
comment : str, optional
    Indicates remainder of line should not be parsed. If found at the beginning
    of a line, the line will be ignored altogether. This parameter must be a
    single character. Like empty lines (as long as ``skip_blank_lines=True``),
    fully commented lines are ignored by the parameter `header` but not by
    `skiprows`. For example, if ``comment='#'``, parsing
    ``#empty\na,b,c\n1,2,3`` with ``header=0`` will result in 'a,b,c' being
    treated as the header.
encoding : str, optional
    Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python
    standard encodings
    <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ .

    .. versionchanged:: 1.2

       When ``encoding`` is ``None``, ``errors="replace"`` is passed to
       ``open()``. Otherwise, ``errors="strict"`` is passed to ``open()``.
       This behavior was previously only the case for ``engine="python"``.

    .. versionchanged:: 1.3.0

       ``encoding_errors`` is a new argument. ``encoding`` has no longer an
       influence on how encoding errors are handled.

encoding_errors : str, optional, default "strict"
    How encoding errors are treated. `List of possible values
    <https://docs.python.org/3/library/codecs.html#error-handlers>`_ .

    .. versionadded:: 1.3.0

dialect : str or csv.Dialect, optional
    If provided, this parameter will override values (default or not) for the
    following parameters: `delimiter`, `doublequote`, `escapechar`,
    `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to
    override values, a ParserWarning will be issued. See csv.Dialect
    documentation for more details.
error_bad_lines : bool, optional, default ``None``
    Lines with too many fields (e.g. a csv line with too many commas) will by
    default cause an exception to be raised, and no DataFrame will be returned.
    If False, then these "bad lines" will be dropped from the DataFrame that is
    returned.

    .. deprecated:: 1.3.0
       The ``on_bad_lines`` parameter should be used instead to specify behavior upon
       encountering a bad line instead.
warn_bad_lines : bool, optional, default ``None``
    If error_bad_lines is False, and warn_bad_lines is True, a warning for each
    "bad line" will be output.

    .. deprecated:: 1.3.0
       The ``on_bad_lines`` parameter should be used instead to specify behavior upon
       encountering a bad line instead.
on_bad_lines : {{'error', 'warn', 'skip'}} or callable, default 'error'
    Specifies what to do upon encountering a bad line (a line with too many fields).
    Allowed values are :

        - 'error', raise an Exception when a bad line is encountered.
        - 'warn', raise a warning when a bad line is encountered and skip that line.
        - 'skip', skip bad lines without raising or warning when they are encountered.

    .. versionadded:: 1.3.0

        - callable, function with signature
          ``(bad_line: list[str]) -> list[str] | None`` that will process a single
          bad line. ``bad_line`` is a list of strings split by the ``sep``.
          If the function returns ``None``, the bad line will be ignored.
          If the function returns a new list of strings with more elements than
          expected, a ``ParserWarning`` will be emitted while dropping extra elements.
          Only supported when ``engine="python"``

    .. versionadded:: 1.4.0

delim_whitespace : bool, default False
    Specifies whether or not whitespace (e.g. ``' '`` or ``'	'``) will be
    used as the sep. Equivalent to setting ``sep='\s+'``. If this option
    is set to True, nothing should be passed in for the ``delimiter``
    parameter.
low_memory : bool, default True
    Internally process the file in chunks, resulting in lower memory use
    while parsing, but possibly mixed type inference.  To ensure no mixed
    types either set False, or specify the type with the `dtype` parameter.
    Note that the entire file is read into a single DataFrame regardless,
    use the `chunksize` or `iterator` parameter to return the data in chunks.
    (Only valid with C parser).
memory_map : bool, default False
    If a filepath is provided for `filepath_or_buffer`, map the file object
    directly onto memory and access the data directly from there. Using this
    option can improve performance because there is no longer any I/O overhead.
float_precision : str, optional
    Specifies which converter the C engine should use for floating-point
    values. The options are ``None`` or 'high' for the ordinary converter,
    'legacy' for the original lower precision pandas converter, and
    'round_trip' for the round-trip converter.

    .. versionchanged:: 1.2

{storage_options}

    .. versionadded:: 1.2

Returns
-------
DataFrame or TextParser
    A comma-separated values (csv) file is returned as two-dimensional
    data structure with labeled axes.

See Also
--------
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
read_csv : Read a comma-separated values (csv) file into DataFrame.
read_fwf : Read a table of fixed-width formatted lines into DataFrame.

Examples
--------
>>> pd.{func_name}('data.csv')  # doctest: +SKIP
FT)delim_whitespace	na_filter
low_memory
memory_mapfloat_precisioninferd   )colspecsinfer_nrowswidths
skipfooterr,   r.   	chunksizecommentnrows	thousandsr-   dialectwarn_bad_lineserror_bad_lineson_bad_linesr*   quotinglineterminator
convertersdecimaliteratordayfirstinfer_datetime_formatverboseskipinitialspacec                   @  s   e Zd ZU ded< ded< dS )_DeprecationConfigr   default_value
str | NonemsgN)__name__
__module____qualname____annotations__ rN   rN   =/tmp/pip-unpacked-wheel-t4uyudxd/pandas/io/parsers/readers.pyrF     s   
rF   zUse on_bad_lines in the future.z2Append .squeeze("columns") to the call to squeeze.z;Use a list comprehension on the column names in the future.)r;   r:   squeezeprefixzdict[str, _DeprecationConfig]_deprecated_defaultsc                 C  s^   d| dd|d}|dk	rZt |rBt||kr8t|t|}nt|rR||ksZt||S )a  
    Checks whether the 'name' parameter for parsing is either
    an integer OR float that can SAFELY be cast to an integer
    without losing accuracy. Raises a ValueError if that is
    not the case.

    Parameters
    ----------
    name : str
        Parameter name (used for error reporting)
    val : int or float
        The value to check
    min_val : int
        Minimum allowed value (val < min_val will result in a ValueError)
    'sz' must be an integer >=dN)r   int
ValueErrorr   )namevalZmin_valrI   rN   rN   rO   validate_integer  s    
rZ   c                 C  sH   | dk	rDt | t t| kr$tdt| ddsDt| tjsDtddS )aZ  
    Raise ValueError if the `names` parameter contains duplicates or has an
    invalid data type.

    Parameters
    ----------
    names : array-like or None
        An array containing a list of the names used for the output DataFrame.

    Raises
    ------
    ValueError
        If names are not unique or are not ordered (e.g. set).
    Nz Duplicate names are not allowed.F)Z
allow_setsz&Names should be an ordered collection.)lensetrW   r   
isinstancer   KeysView)namesrN   rN   rO   _validate_names  s    

r`   z4FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str])filepath_or_bufferc              
   C  s   | dddk	r*| dddkr*d|d< n| dddkrBd|d< | dd}| dd}| dd	kr|rttd
|dk	rtdntd| ddd}| dd}t| dd t| f|}|s|r|S | ||W  5 Q R  S Q R X dS )zGeneric reader of line files.date_parserNparse_datesTFrA   r5   enginepyarrowz@The 'iterator' option is not supported with the 'pyarrow' enginezAThe 'chunksize' option is not supported with the 'pyarrow' engine   r7   r_   )getrW   rZ   r`   TextFileReaderread)ra   kwdsrA   r5   r7   parserrN   rN   rO   _read  s4    
rl   ra      )versionZallowed_args
stacklevelread_csvz8Read a comma-separated values (csv) file into DataFrame.z','storage_optionsdecompression_options)	func_namesummaryZ_default_seprq   rr   ."strictzDtypeArg | NoneCSVEngine | Noner   strrH   r   )ra   dtyperd   compressionr@   encoding_errorsrq   c4           6      C  sL   t   }4|4d= |4d= t|+||/|||,|-|.||ddid}5|4|5 t| |4S )Nra   sep	delimiter,defaultslocalscopy_refine_defaults_readupdaterl   6ra   r}   r~   headerr_   	index_colusecolsrP   rQ   mangle_dupe_colsrz   rd   r?   Ztrue_valuesZfalse_valuesrE   skiprowsr4   r7   	na_valueskeep_default_nar+   rD   Zskip_blank_linesrc   rC   Zkeep_date_colrb   rB   Zcache_datesrA   r5   r{   r8   r@   r>   	quotecharr=   doublequote
escapecharr6   encodingr|   r9   r;   r:   r<   r*   r,   r-   r.   rq   rj   Zkwds_defaultsrN   rN   rO   rp   H  s$    M


read_tablez+Read general delimited file into DataFrame.z'\\t' (tab-stop)c4           6      C  sL   t   }4|4d= |4d= t|+||/|||,|-|.||ddid}5|4|5 t| |4S )Nra   r}   r~   	r   r   r   rN   rN   rO   r     s$    M

   z"list[tuple[int, int]] | str | Nonezlist[int] | NonerV   zDataFrame | TextFileReader)ra   r1   r3   r2   returnc           
      K  s.  |dkr|dkrt dn|dkr2|dk	r2t d|dk	rhg d }}|D ]}|||| f ||7 }qH|dk	stt|d}|dk	rt|t|kr|dkrd}|ddk	r|d}	|	d	k	rt|	sd
}nt|	}|ddkrt|| t|krt d||d< ||d< d|d< t| |S )a  
    Read a table of fixed-width formatted lines into DataFrame.

    Also supports optionally iterating or breaking of the file
    into chunks.

    Additional help can be found in the `online docs for IO Tools
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.

    Parameters
    ----------
    filepath_or_buffer : str, path object, or file-like object
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a text ``read()`` function.The string could be a URL.
        Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
        expected. A local file could be:
        ``file://localhost/path/to/table.csv``.
    colspecs : list of tuple (int, int) or 'infer'. optional
        A list of tuples giving the extents of the fixed-width
        fields of each line as half-open intervals (i.e.,  [from, to[ ).
        String value 'infer' can be used to instruct the parser to try
        detecting the column specifications from the first 100 rows of
        the data which are not being skipped via skiprows (default='infer').
    widths : list of int, optional
        A list of field widths which can be used instead of 'colspecs' if
        the intervals are contiguous.
    infer_nrows : int, default 100
        The number of rows to consider when letting the parser determine the
        `colspecs`.
    **kwds : optional
        Optional keyword arguments can be passed to ``TextFileReader``.

    Returns
    -------
    DataFrame or TextFileReader
        A comma-separated values (csv) file is returned as two-dimensional
        data structure with labeled axes.

    See Also
    --------
    DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
    read_csv : Read a comma-separated values (csv) file into DataFrame.

    Examples
    --------
    >>> pd.read_fwf('data.csv')  # doctest: +SKIP
    Nz&Must specify either colspecs or widths)Nr/   z4You must specify only one of 'widths' and 'colspecs'r   r_   r/   r   Frf   r   z-Length of colspecs must match length of namesr1   r2   
python-fwfrd   )rW   appendAssertionErrorrg   r[   r   rl   )
ra   r1   r3   r2   rj   colwr_   Z	len_indexr   rN   rN   rO   read_fwf  s4    :





&r   c                   @  s   e Zd ZdZd!dddddZdd	 Zd
d Zdd Zdd Zdd Z	d"dddddZ
dd Zd#ddZd$ddZdd Zdd  ZdS )%rh   zF

    Passed dialect overrides any of the related parser options

    Nz;FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | listrx   )frd   c                 K  s*  |d k	rd}nd}d}|| _ |d|| _t| t|}|d k	r\|dkrRtdt||}|dddkr|d	d kr~d
nd |d< || _d
| _| 	|}|dd |d< |
dd | _|
dd | _| || | ||\| _| _ | j
dd| _d|kr|d | jd< d | _| || j | _d S )NTpythonFengine_specifiedre   z?The 'dialect' option is not supported with the 'pyarrow' enginer   r/   r_   r   rq   r5   r7   rP   Zhas_index_names)rd   rg   _engine_specified_validate_skipfooter_extract_dialectrW   _merge_with_dialect_propertiesorig_options_currow_get_options_with_defaultspopr5   r7   _check_file_or_buffer_clean_optionsoptionsrP   handles_make_engine_engine)selfr   rd   rj   r   r9   r   rN   rN   rO   __init__w  s:    


zTextFileReader.__init__c                 C  s"   | j d k	r| j   | j  d S N)r   closer   r   rN   rN   rO   r     s    

zTextFileReader.closec                 C  s  | j }i }t D ]\}}|||}|dkr|tkr||kr|t|d|kr|dkrj|dd k	rjd}n|dkr|dd k	rd}tdt| dq|dkr|d	krtd
q|||< qt D ]\}}||krF|| }|dkrZ||krZd|kr
|t	kr
n:|t
|t|d jkr&ntdt| dt| dnt
|t|d j}|||< q|dkrt D ]\}}|||||< qv|S )Nre   valuer<   r;   r:   The z2 option is not supported with the 'pyarrow' enginer   Fz3Setting mangle_dupe_cols=False is not supported yetcr   z" option is not supported with the z enginer   )r   r$   itemsrg   _pyarrow_unsupportedgetattrrW   repr_c_parser_defaults_python_unsupportedrR   rF   rG   _fwf_defaults)r   rd   rj   r   argnamedefaultr   rN   rN   rO   r     sl    


  

z)TextFileReader._get_options_with_defaultsc                 C  s&   t |r"|dkr"t|ds"tdd S )Nr   __iter__z<The 'python' engine cannot iterate through this file buffer.)r   hasattrrW   )r   r   rd   rN   rN   rO   r     s    z$TextFileReader._check_file_or_bufferc                 C  s  |  }d }|dkr(|d dkr(d}d}|d }|d }|d kr^|s^|dkr\d	| d
}d}n|d k	rt|dkr|dkr|dkrd|d< |d= n|dkrd	| d}d}n|rd|krd|d< nv|d k	r8d}t pd}zt||dkrd}W n tk
r   d}Y nX |s8|dkr8d| d| d}d}|d }	|	d k	rt|	ttfrt|	dkrt	|	dkr|dkrd| d}d}|r| j
rt||dkrtD ]}
||
= qd|krtD ]>}
|r||
 t|
 krtd| dt|
 d||
= q|r0tjd| dtt d |d }|d }|d  }|d! }|d" }t|d#  t D ]b}
t|
t|
 }t|
 }||
||jkrd$|
 d%|j d&}tj|tt d n|||
< ql|dkrtd't|rt|tttj fs|g}||d< |d k	r t|n|}|d k	rPt|t!sTt"d(t#|j$ ni }|d) }t%||\}}|d*krt&|s|d k	rtd+n:t&|rtt'|}|d krt( }nt)|st(|}||d< ||d < ||d!< ||d,< ||d"< |d- d krdn|d- |d-< ||fS ).Nr   r4   r   z*the 'c' engine does not support skipfooterr   r~   r*   )r   re   zthe 'z>' engine does not support sep=None with delim_whitespace=Falserf   z\s+T)r   r   zr' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex)zutf-8Fzthe separator encoded in z is > 1 char long, and the 'z)' engine does not support such separatorsr      zNord(quotechar) > 127, meaning the quotechar is larger than one byte, and the 'z)' engine does not support such quotecharsz,Falling back to the 'python' engine because z, but this causes z= to be ignored as it is not supported by the 'python' engine.z;; you can avoid this warning by specifying engine='python'.ro   r   r_   r?   r   r   r   r   zG argument has been deprecated and will be removed in a future version. 

z)The value of index_col couldn't be 'True'z8Type converters must be a dict or subclass, input was a r   re   z@skiprows argument must be an integer when using engine='pyarrow'
na_fvaluesrP   )*r   r[   sysgetfilesystemencodingencodeUnicodeDecodeErrorr]   ry   bytesordr   rW   _c_unsupportedr   r   r   warningswarnr   r   r    rR   keysrg   r$   rG   rI   FutureWarningr#   listtuplenpZndarraydict	TypeErrortyperJ   _clean_na_valuesr   ranger\   callable)r   r   rd   resultZfallback_reasonr}   r*   Z
encodeabler   r   argr   r_   r?   r   r   parser_defaultZdepr_defaultrI   r   r   rN   rN   rO   r     s    




















zTextFileReader._clean_optionsc                 C  s.   z
|   W S  tk
r(   |    Y nX d S r   )	get_chunkStopIterationr   r   rN   rN   rO   __next__  s
    
zTextFileReader.__next__r   z@FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | list | IOr   c                 C  s  t tttd}||kr0td| d|  dt|tsd}d}|dkrRd}d	}t||| j	
d
d | j	
dd | j	
dd|| j	
dd| j	
dd d| _| jd k	st| jj}n|dkrdt| }t|z|| |f| j	W S  tk
r   | jd k	r| j   Y nX d S )N)r   r   re   r   zUnknown engine: z (valid options are )Trre   Frbr   r{   r-   r|   rw   rq   )r   r{   r-   is_texterrorsrq   r   z)Invalid file path or buffer object type: )r%   r'   r!   r&   rW   r   r]   r   r   r   rg   r   r   handler   	Exceptionr   )r   r   rd   mappingr   moderI   rN   rN   rO   r     sH    



zTextFileReader._make_enginec                 C  s   t | d S r   )r   r   rN   rN   rO   _failover_to_python  s    z"TextFileReader._failover_to_pythonc                 C  s   | j dkr:z| j }W q tk
r6   |    Y qX ntd|}z| j|\}}}W n tk
rx   |    Y nX |d kr|rttt|	 }t
| j| j| }qd}nt|}t|||d}|  j|7  _| jrt|jdkr|d S |S )Nre   r7   r   )columnsindexrf   r   )rd   r   ri   r   r   rZ   r[   nextitervaluesr   r   r   rP   r   r   )r   r7   Zdfr   r   Zcol_dictZnew_rowsrN   rN   rO   ri     s.    


zTextFileReader.readc                 C  sF   |d kr| j }| jd k	r:| j| jkr(tt|| j| j }| j|dS )N)r7   )r5   r7   r   r   minri   )r   sizerN   rN   rO   r     s    
zTextFileReader.get_chunkc                 C  s   | S r   rN   r   rN   rN   rO   	__enter__  s    zTextFileReader.__enter__c                 C  s   |    d S r   )r   )r   exc_type	exc_value	tracebackrN   rN   rO   __exit__
  s    zTextFileReader.__exit__)N)r   )N)N)rJ   rK   rL   __doc__r   r   r   r   r   r   r   r   ri   r   r   r   rN   rN   rN   rO   rh   p  s    	 1C (
 1
!
	rh   c                  O  s   d|d< t | |S )av	  
    Converts lists of lists/tuples into DataFrames with proper type inference
    and optional (e.g. string to datetime) conversion. Also enables iterating
    lazily over chunks of large files

    Parameters
    ----------
    data : file-like object or list
    delimiter : separator character to use
    dialect : str or csv.Dialect instance, optional
        Ignored if delimiter is longer than 1 character
    names : sequence, default
    header : int, default 0
        Row to use to parse column labels. Defaults to the first row. Prior
        rows will be discarded
    index_col : int or list, optional
        Column or columns to use as the (possibly hierarchical) index
    has_index_names: bool, default False
        True if the cols defined in index_col have an index name and are
        not in the header.
    na_values : scalar, str, list-like, or dict, optional
        Additional strings to recognize as NA/NaN.
    keep_default_na : bool, default True
    thousands : str, optional
        Thousands separator
    comment : str, optional
        Comment out remainder of line
    parse_dates : bool, default False
    keep_date_col : bool, default False
    date_parser : function, optional
    skiprows : list of integers
        Row numbers to skip
    skipfooter : int
        Number of line at bottom of file to skip
    converters : dict, optional
        Dict of functions for converting values in certain columns. Keys can
        either be integers or column labels, values are functions that take one
        input argument, the cell (not column) content, and return the
        transformed content.
    encoding : str, optional
        Encoding to use for UTF when reading/writing (ex. 'utf-8')
    squeeze : bool, default False
        returns Series if only one column.
    infer_datetime_format: bool, default False
        If True and `parse_dates` is True for a column, try to infer the
        datetime format based on the first datetime string. If the format
        can be inferred, there often will be a large parsing speed-up.
    float_precision : str, optional
        Specifies which converter the C engine should use for floating-point
        values. The options are `None` or `high` for the ordinary converter,
        `legacy` for the original lower precision pandas converter, and
        `round_trip` for the round-trip converter.

        .. versionchanged:: 1.2
    r   rd   )rh   )argsrj   rN   rN   rO   
TextParser  s    8r   c                 C  s   | d kr |rt } nt } t }nt| tr|  }i } | D ].\}}t|sT|g}|rdt|t B }|| |< q>dd |  D }n*t| s| g} t| } |r| t B } t| }| |fS )Nc                 S  s   i | ]\}}|t |qS rN   )_floatify_na_values).0kvrN   rN   rO   
<dictcomp>b  s      z$_clean_na_values.<locals>.<dictcomp>)	r	   r\   r]   r   r   r   r   _stringify_na_valuesr   )r   r   r   Zold_na_valuesr   r   rN   rN   rO   r   J  s,    

r   c                 C  sP   t  }| D ]@}z t|}t|s,|| W q
 tttfk
rH   Y q
X q
|S r   )r\   floatr   isnanaddr   rW   OverflowError)r   r   r   rN   rN   rO   r   o  s    
r   c                 C  s   g }| D ]}| t| | | zHt|}|t|kr`t|}| | d | t| | | W n tttfk
r   Y nX z| t| W q tttfk
r   Y qX qt|S )z1return a stringified and numeric for these valuesz.0)r   ry   r   rV   r   rW   r  r\   )r   r   xr   rN   rN   rO   r   |  s$    
r   zstr | csv.Dialectzstr | objectboolzbool | Nonezstr | Callable | NonezArrayLike | None | objectzstr | None | objectzdict[str, Any])r9   r~   r*   rd   r}   r;   r:   r<   r_   rQ   r   c                 C  s4  |
d }i }| dk	r2|dko,|t jkp,||k|d< |rH|t jk	rHtd|dk	rt|t jk	rt|	dk	rt|	t jk	rttd|t jkrdn||d< |	t jkrdn|	|d< |dkr|}|r|t jk	rtd|d	krtd
|t jkr||d< n||d< |dk	rd|d< nd|d< d|d< |dk	r|dk	s0|dk	r8td|dkrPtjj|d< nf|dkrhtjj|d< nN|dkrtjj|d< n6t|r|dkrtd||d< ntd| dnx|dk	r$t	|d |rtjj|d< nB|dk	rt	|d |rtjj|d< ntjj|d< ntjj|d< ntjj|d< |S )aP  Validate/refine default values of input parameters of read_csv, read_table.

    Parameters
    ----------
    dialect : str or csv.Dialect
        If provided, this parameter will override values (default or not) for the
        following parameters: `delimiter`, `doublequote`, `escapechar`,
        `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to
        override values, a ParserWarning will be issued. See csv.Dialect
        documentation for more details.
    delimiter : str or object
        Alias for sep.
    delim_whitespace : bool
        Specifies whether or not whitespace (e.g. ``' '`` or ``'	'``) will be
        used as the sep. Equivalent to setting ``sep='\s+'``. If this option
        is set to True, nothing should be passed in for the ``delimiter``
        parameter.
    engine : {{'c', 'python'}}
        Parser engine to use. The C engine is faster while the python engine is
        currently more feature-complete.
    sep : str or object
        A delimiter provided by the user (str) or a sentinel value, i.e.
        pandas._libs.lib.no_default.
    error_bad_lines : str or None
        Whether to error on a bad line or not.
    warn_bad_lines : str or None
        Whether to warn on a bad line or not.
    on_bad_lines : str, callable or None
        An option for handling bad lines or a sentinel value(None).
    names : array-like, optional
        List of column names to use. If the file contains a header row,
        then you should explicitly pass ``header=0`` to override the column names.
        Duplicates in this list are not allowed.
    prefix : str, optional
        Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ...
    defaults: dict
        Default values of input parameters.

    Returns
    -------
    kwds : dict
        Input parameters with correct values.

    Raises
    ------
    ValueError :
        If a delimiter was specified with ``sep`` (or ``delimiter``) and
        ``delim_whitespace=True``.
        If on_bad_lines is specified(not ``None``) and ``error_bad_lines``/
        ``warn_bad_lines`` is True.
    r~   Nsep_overridez:Specified a sep and a delimiter; you can only specify one.z5Specified named and prefix; you can only specify one.r_   rQ   zXSpecified a delimiter with both sep and delim_whitespace=True; you can only specify one.
zSpecified \n as separator or delimiter. This forces the python engine which does not accept a line terminator. Hence it is not allowed to use the line terminator as separator.Tr   r   rd   Fz[Both on_bad_lines and error_bad_lines/warn_bad_lines are set. Please only set on_bad_lines.errorr<   r   skipr   z>on_bad_line can only be a callable function if engine='python'z	Argument z is invalid for on_bad_linesr;   r:   )
lib
no_defaultrW   r"   ZBadLineHandleMethodERRORWARNZSKIPr   r   )r9   r~   r*   rd   r}   r;   r:   r<   r_   rQ   r   Zdelim_defaultrj   rN   rN   rO   r     s    A














r   zcsv.Dialect | None)rj   r   c                 C  s<   |  ddkrdS | d }|t kr0t|}t| |S )za
    Extract concrete csv dialect instance.

    Returns
    -------
    csv.Dialect or None
    r9   N)rg   csvlist_dialectsget_dialect_validate_dialect)rj   r9   rN   rN   rO   r   G  s    
r   )r~   r   r   rE   r   r=   zcsv.DialectNone)r9   r   c                 C  s(   t D ]}t| |std|  dqdS )zx
    Validate csv dialect instance.

    Raises
    ------
    ValueError
        If incorrect dialect is provided.
    zInvalid dialect z	 providedN)MANDATORY_DIALECT_ATTRSr   rW   )r9   paramrN   rN   rO   r  e  s    	
r  )r9   r   r   c           	      C  s   |  }tD ]}t| |}t| }|||}g }||krx||krxd| d| d| d}|dkrn|ddsx|| |rtjd	|t
t d	 |||< q|S )
a  
    Merge default kwargs in TextFileReader with dialect parameters.

    Parameters
    ----------
    dialect : csv.Dialect
        Concrete csv dialect. See csv.Dialect documentation for more details.
    defaults : dict
        Keyword arguments passed to TextFileReader.

    Returns
    -------
    kwds : dict
        Updated keyword arguments, merged with dialect parameters.
    zConflicting values for 'z': 'z+' was provided, but the dialect specifies 'z%'. Using the dialect-specified value.r~   r  Fr   r   )r   r  r   r$   rg   r   r   r   r   joinr   r   )	r9   r   rj   r  Zdialect_valr   providedZconflict_msgsrI   rN   rN   rO   r   s  s&    
	
  
r   c                 C  s<   |  dr8|  ds|  dr&td|  dr8tddS )a  
    Check whether skipfooter is compatible with other kwargs in TextFileReader.

    Parameters
    ----------
    kwds : dict
        Keyword arguments passed to TextFileReader.

    Raises
    ------
    ValueError
        If skipfooter is not compatible with other parameters.
    r4   rA   r5   z('skipfooter' not supported for iterationr7   z''skipfooter' not supported with 'nrows'N)rg   rW   )rj   rN   rN   rO   r     s
    

r   )r   )r/   Nr0   )T)br   
__future__r   collectionsr   r  r   textwrapr   typingr   r   r   r   r   Znumpyr   Zpandas._libs.libZ_libsr  Zpandas._libs.parsersr	   Zpandas._typingr
   r   r   r   r   r   r   Zpandas.errorsr   r   Zpandas.util._decoratorsr   r   Zpandas.util._exceptionsr   Zpandas.util._validatorsr   Zpandas.core.dtypes.commonr   r   r   r   Zpandas.core.framer   Zpandas.core.indexes.apir   Zpandas.core.shared_docsr   Zpandas.io.commonr   r   r    Z&pandas.io.parsers.arrow_parser_wrapperr!   Zpandas.io.parsers.base_parserr"   r#   r$   Z"pandas.io.parsers.c_parser_wrapperr%   Zpandas.io.parsers.python_parserr&   r'   r  sortedZ_doc_read_csv_and_tabler   r   r   r   r   rF   rR   rM   rZ   r`   rl   formatr	  QUOTE_MINIMALrp   r   r   Iteratorrh   r   r   r   r   r   r   r  r  r   r   rN   rN   rN   rO   <module>   s  $	      l  
-   W   W     _   !<
%" 3
6